Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.406
Filtrar
1.
J Hazard Mater ; 470: 134258, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608588

RESUMO

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Assuntos
Naproxeno , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água , Naproxeno/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Transferência de Energia , Peróxido de Hidrogênio/química , Ácido Peracético/química , Processos Fotoquímicos
2.
Orthopadie (Heidelb) ; 53(5): 341-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498205

RESUMO

BACKGROUND: The use of allografts and autografts has been met with mixed views on whether allografts are a suitable alternative to autografts. QUESTION: We aimed to investigate if chemically sterilized allografts show similar rerupture rates to those reported in the literature for allografts and autografts in anterior (ACL) and posterior cruciate ligaments (PCL) and complex knee surgery. MATERIALS AND METHODS: Retrospective data on knee reconstructions performed between 2011 and 2015 with tendon/ligamnet allografts sterilized with peracetic acid were collected in the form of a questionnaire. The inclusion criteria of 2 years for each patient were met by 38 patients, representing 22 ACL reconstructions, 5 PCL reconstructions, 3 OTHER surgeries, including the Larson technique and medial patellofemoral ligament (MPFL) reconstruction and 8 COMPLEX surgeries. The main endpoints were rerupture and complication rate. Secondary endpoints included stability of the knee (Lachman test, Pivot shift test) and the range of motion. RESULTS: The rerupture rate was 7.9% (3 grafts). Reruptures only occurred in the ACL group. No reruptures were observed in the PCL, OTHER and COMPLEX surgery groups. Stability improved significantly after surgery and the range of motion returned to values similar to that of healthy knees. CONCLUSIONS: Tendon allografts sterilized with peracetic acid show promising low rerupture rates and good clinical scores and the results are comparable to the literature on autografts and other allografts.


Assuntos
Aloenxertos , Ácido Peracético , Esterilização , Tendões , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Tendões/transplante , Pessoa de Meia-Idade , Esterilização/métodos , Reconstrução do Ligamento Cruzado Anterior/métodos , Reconstrução do Ligamento Cruzado Posterior/métodos , Ligamento Cruzado Posterior/cirurgia , Transplante Homólogo/métodos
3.
Chemosphere ; 354: 141684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494005

RESUMO

The presented research concerns the use of nickel cobaltite nanoparticles (NiCo2O4 NPs) for the heterogeneous activation of peracetic acid and application of NiCo2O4-PAA system for degradation 10 organic micropollutants from the group of bisphenols. The bisphenols removal (initial concentration 1 µM) process was optimized by selecting the appropriate process conditions. The optimal amount of catalyst (115 mg/L), peracetic acid (PAA) concentration (7 mM) and pH (7) were determined using response surface analysis in the Design of Experiment. Then, NiCo2O4 NPs were used to check the possibility of reuse in subsequent oxidation cycles. The work also attempts to explain the mechanism of oxidation of the studied micropollutants. The participation of the sorption process on the catalyst was excluded and based on the experiments with radical scavengers it can be concluded that the oxidation proceeds in a radical pathway, mainly with participation of O2•- radicals. Experiments conducted in real water matrices exhibit low impact on degradation efficiency. Toxicity tests with green alga Acutodesmus obliquus and aquatic plant Lemna minor showed that post-reaction mixture influenced growth and the content of photosynthetic pigments in concentration dependent manner.


Assuntos
Araceae , Compostos Benzidrílicos , Minerais , Oxidantes , Fenóis , Poluentes Químicos da Água , Ácido Peracético , Peróxido de Hidrogênio , Níquel , Oxirredução
4.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
5.
J Hazard Mater ; 470: 134166, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554511

RESUMO

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Assuntos
Antibacterianos , Ácido Peracético , Raios Ultravioleta , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Peracético/farmacologia , Tetraciclina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/efeitos dos fármacos , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos da radiação , Desinfecção/métodos , Biodegradação Ambiental
6.
J Hazard Mater ; 470: 134139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555674

RESUMO

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Assuntos
Biomassa , Carvão Vegetal , Ferro , Ácido Peracético , Poluentes Químicos da Água , Purificação da Água , Ácido Peracético/química , Carvão Vegetal/química , Ferro/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Nitrogênio/química , Naproxeno/química , Catálise , Descontaminação/métodos , Adsorção
7.
J Hazard Mater ; 467: 133638, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354441

RESUMO

Peracetic acid (PAA) emerges as a promising disinfectant and oxidant applied worldwide, and its application has been broadened for advanced oxidation processes (AOPs) in wastewater treatment. Current studies on transition metal-activated AOPs utilized relatively high concentrations of catalysts, leading to potential secondary pollution concerns. This study boosts the understanding of reaction mechanism in PAA activation system under a low-level concentration. Herein, trace levels of Co(II) (1 µM) and practical dosages of PAA (50-250 µM) were employed, achieving noticeable ciprofloxacin (CIP) degradation efficiencies (75.8-99.0%) within 20 min. Two orders of magnitude of the CIP's antibacterial activity significantly decreased after Co(II)/PAA AOP treatment, which suggested the effective ecological risk control capability of the reaction system. The degradation performed well in various water matrices and the primary reactive species is proposed to be CoHPO4-OO(O)CCH3 complexes with scavenging tests and electron paramagnetic resonance tests. The degradation pathway of fluoroquinolones including piperazine ring-opening (dealkylation and oxidation), defluorination, and decarboxylation, were systematically elucidated. This study boosts a comprehensive and novel understanding of PAA-based AOP for CIP degradation.


Assuntos
Ciprofloxacina , Ácido Peracético , Oxidantes , Fosfatos , Estresse Oxidativo
8.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373840

RESUMO

AIMS: This study investigated the antimicrobial efficacy of ultrasound technology (US) in combination with two different disinfectants (Disinfectant A and Disinfectant B), containing peracetic acid (PAA) and quaternary ammonium compounds (QACs), respectively, against two sporigenic pathogens, Aspergillus brasiliensis and Bacillus subtilis. METHODS AND RESULTS: The microbicidal activity of the coupled treatment was compared with the use of the disinfectants alone, and the efficacy of the disinfection strategies was evaluated by the log reduction of the population of the microorganism inoculated onto stainless-steel surface. The combination treatment resulted in a log reduction of 5.40 and 3.88 (Disinfectant A + US) against A. brasiliensis and B. subtilis, at 850 and 500 ppm PAA, compared to 265 and 122 (Disinfectant A only). For Disinfectant B, in combination with US, showed a logarithmic reduction of 5.04 and 4.79 against A. brasiliensis and B. subtilis at 078% v v-1 and 392% v v-1 QACs, respectively, vs. 1.58 and 1.64 (Disinfectant B only). Moreover, no colonies or not statistically significant growth was observed within the US bath containing the disinfectant. CONCLUSIONS: The antimicrobial efficacy of the two disinfectants was greatly enhanced when used in combination with US, and this also makes it possible to avoid the overuse of chemicals for disinfection.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Desinfetantes/química , Ácido Peracético/farmacologia , Desinfecção/métodos , Bacillus subtilis
9.
Bioresour Technol ; 397: 130452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354963

RESUMO

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BN3Z0.5BC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BN3Z0.5BC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.


Assuntos
Carvão Vegetal , Ácido Peracético , Poluentes Químicos da Água , Oxirredução , Poluentes Químicos da Água/química , Radicais Livres , Antibacterianos
10.
Int J Food Microbiol ; 414: 110613, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341905

RESUMO

Sanitizers are widely incorporated in commercial apple dump tank systems to mitigate the cross-contamination of foodborne pathogens. This study validated the suitability of Enterococcus faecium NRRL B-2354 as a surrogate for Listeria monocytogenes during sanitizer interventions in dump tank water systems. E. faecium NRRL B-2354 inoculated on apples exhibited statistically equivalent susceptibility to L. monocytogenes when exposed to chlorine-based sanitizers (25-100 ppm free chlorine (FC)) and peroxyacetic acid (PAA, 20-80 ppm) in simulated dump tank water (SDTW) with 1000 ppm chemical oxygen demand (COD), resulting in 0.2-0.9 and 1.1-1.7 log CFU/apple reduction, respectively. Increasing the contact time did not affect sanitizer efficacies against E. faecium NRRL B-2354 and L. monocytogenes on apples. Chlorine and PAA interventions demonstrated statistically similar efficacies against both bacteria inoculated in SDTW. Chlorine at 25 and 100 ppm FC for 0.5-5 min contact yielded ~37.68-78.25 % and > 99.85 % inactivation, respectively, in water with 1000-4000 ppm COD, while ~51.55-99.86 % and > 99.97 % inactivation was observed for PAA at 20 and 80 ppm, respectively. No statistically significant difference was observed between the transference of E. faecium NRRL B-2354 and L. monocytogenes from inoculated apples to uninoculated apples and water, and from water to uninoculated apples during chlorine- or PAA-treated SDTW exposure. The data suggest E. faecium NRRL B-2354 is a viable surrogate for L. monocytogenes in dump tank washing systems, which could be used to predict the anti-Listeria efficacy of chlorine and PAA interventions during commercial apple processing. Further investigations are recommended to assess the suitability of E. faecium NRRL B-2354 as a surrogate for L. monocytogenes, when using different sanitizers and different types of produce to ensure reliable and comprehensive results.


Assuntos
Desinfetantes , Enterococcus faecium , Listeria monocytogenes , Malus , Ácido Peracético/farmacologia , Malus/microbiologia , Cloro/farmacologia , Água , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Desinfetantes/farmacologia
11.
Int J Food Microbiol ; 413: 110601, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301540

RESUMO

Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. Taking these data together, we demonstrated the value of applying the HIE model to validate current operational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, along with the predictive model described in this study expand the current knowledge to implement post-harvest produce safety procedures in industry settings.


Assuntos
Desinfetantes , Norovirus , Humanos , Desinfecção/métodos , Verduras , Cloro/farmacologia , Ácido Peracético/farmacologia , Norovirus/fisiologia , Água , Inativação de Vírus , Desinfetantes/farmacologia
12.
Poult Sci ; 103(4): 103492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335673

RESUMO

Salmonella and Campylobacter are common bacterial hazards causing foodborne illnesses worldwide. A large proportion of Salmonella and Campylobacter illnesses are attributed to contaminated poultry products that are mishandled or under cooked. Processing interventions such as chilling and post-chill dip are critical to reducing microbial contamination of poultry. A comprehensive search of the literature published between 2000 and 2021 was conducted in the databases Web of Science, Academic Search Complete, and Academic OneFile. Studies were included if they were in English and investigated the effects of interventions against Salmonella and/or Campylobacter on whole carcasses and/or parts during the chilling or post-chill stages of poultry processing. Random-effects meta-analyses were performed using the "meta" package in the R programming language. Subgroup analyses were assessed according to outcome measure reported, microorganism tested, processing stage assessed, and chemical treatment used. The results included 41 eligible studies. Eighteen studies reported results of 28 separate interventions against Salmonella and 31 reported results of 50 separate interventions against Campylobacter. No significant difference (P> 0.05) was observed when comparing the combined mean difference of all interventions targeting Salmonella to the combined mean difference of all interventions targeting Campylobacter or when comparing chilling times within each pathogen subgroup. For analyses examining antimicrobial additives, peroxyacetic acid (PAA) had the largest reduction against Salmonella population regardless of chilling time (P< 0.05). PAA also had the largest reduction against Campylobacter population and prevalence during primary chilling (P< 0.01). Air chilling showed a lower reduction for Campylobacter than any immersion chilling intervention (P< 0.05). Chilling time and antimicrobial used during poultry processing had varying effects depending on the pathogen and outcome measure investigated (concentration or prevalence). High heterogeneity and low sample numbers in most analyses suggest that more high-quality research that is well-designed and has transparent reporting of methodology and results is needed to corroborate the results.


Assuntos
Anti-Infecciosos , Campylobacter , Animais , Aves Domésticas , Carne/microbiologia , Microbiologia de Alimentos , Galinhas/microbiologia , Manipulação de Alimentos/métodos , Salmonella , Anti-Infecciosos/farmacologia , Ácido Peracético/farmacologia
13.
Environ Pollut ; 345: 123427, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286262

RESUMO

The escalating presence of antibiotic-resistant bacteria (ARB) in aquatic ecosystems underscores the critical role of wastewater treatment plants (WWTPs) in mitigating antibiotic resistance. Disinfection is the final, pivotal step in WWTPs, and it is essential to control the dissemination of ARB before water discharge. This study utilized both phenotypic analysis and transcriptome (RNA-seq) approach to investigate the efficiency and mechanisms of disinfection using chlorination, ultraviolet (UV), and peracetic acid (PAA) on multidrug-resistant bacteria (MRB). Our results demonstrated that the use of 100 mg min L-1 of chlorine, 8.19 mJ cm-2 of UV irradiation or 50 min mg L-1 of PAA significantly reduced the abundance of MRB. Intriguingly, RNA-seq clarified distinct mechanisms of chlorination and UV disinfection. UV radiation triggered the SOS response to cope with DNA damage, induced the expression of multi-drug resistance genes by increasing the expression of efflux pump transporters. UV radiation also promoted the absorption of iron through chelation and transportation to participate in various cell life processes. Chlorination, on the other hand, significantly up-regulated osmotic response elements, including the synthesis of glycine betaine, iron-sulfur clusters, and related transporters. Both chlorination and UV significantly down-regulated key metabolic pathways (P < 0.05), inhibiting the process of amino acid synthesis and energy metabolism. Imbalance in energy homeostasis was the most important factor leading to cytotoxicity. These results provide useful insights into optimizing the wastewater disinfection process in order to prevent the dissemination of ARB in aquatic environment.


Assuntos
Águas Residuárias , Purificação da Água , Desinfecção/métodos , Ecossistema , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Ácido Peracético , Raios Ultravioleta , Bactérias , Ferro , Purificação da Água/métodos , Antibacterianos/farmacologia
14.
J Hosp Infect ; 146: 37-43, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224856

RESUMO

INTRODUCTION: Immunocompromised patients are at an increased risk of severe legionella infections. We present the results of an outbreak investigation initiated following a fatal case of hospital-acquired legionellosis linked to contaminated water from a toilet-flushing cistern. Additionally, we provide experimental data on the growth of Legionella spp. in flushing cisterns and propose a straightforward protocol for prevention. METHODS: We monitored the growth of Legionella spp. in the building's hot- and cold-water systems using quantitative bacterial culture on selective agar. Molecular typing of Legionella pneumophila isolates from the infected patient and the water system was conducted through core-genome multi-locus sequence typing (cgMLST). RESULTS: Legionella contamination in the hospital building's cold-water system was significantly higher than in the hot-water system and significantly higher in toilet flushing cistern's water compared with cold water from bathroom sinks and showers. Isolates from the patient and from the flushing cistern of the patient's bathroom were identical by cgMLST. In an experimental setting, daily toilet flushing for a period of 21 days resulted in a 67% reduction in the growth of Legionella spp. in the water of toilet flushing cisterns. Moreover, a one-time disinfection of cisterns with peracetic acid, followed by daily flushing, decreased legionella growth to less than 1% over a period of at least seven weeks in these setting. CONCLUSIONS: One-time disinfection of highly contaminated cisterns with peracetic acid and daily toilet flushing as short-term measure can significantly reduce legionella contamination in flushing cisterns. These measures may aid in preventing legionella infection among immunocompromised patients.


Assuntos
Aparelho Sanitário , Legionella pneumophila , Legionella , Legionelose , Humanos , Ácido Peracético , Tipagem de Sequências Multilocus , Microbiologia da Água , Legionelose/prevenção & controle , Água , Abastecimento de Água
15.
J Food Prot ; 87(2): 100213, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176613

RESUMO

Food-contact surfaces showing signs of wear pose a substantial risk of Listeria monocytogenes contamination and may serve as persistent sources of cross-contamination in fresh produce packinghouses. This study offers a comprehensive exploration into the influence of surface defects on the efficacies of commonly used sanitizers against L. monocytogenes biofilms on major food-contact surfaces. The 7-day-old L. monocytogenes biofilms were cultivated on food-contact surfaces, including stainless steel, polyvinyl chloride, polyester, low-density polyethylene, and rubber, with and without defects and organic matter. Biofilms on those surfaces were subjected to treatments of 200 ppm chlorine, 400 ppm quaternary ammonium compound (QAC), or 160 ppm peroxyacetic acid (PAA). Results showed that surface defects significantly (P < 0.05) increased the population of L. monocytogenes in biofilms on non-stainless steel surfaces and compromised the efficacies of sanitizers against L. monocytogenes biofilms across various surface types. A 5-min treatment of 200 ppm chlorine caused 1.84-3.39 log10 CFU/coupon reductions of L. monocytogenes on worn surfaces, compared to 2.79-3.93 log10 CFU/coupon reduction observed on new surfaces. Similarly, a 5-min treatment with 400 ppm QAC caused 2.05-2.88 log10 CFU/coupon reductions on worn surfaces, compared to 2.51-3.66 log10 CFU/coupon reductions on new surfaces. Interestingly, PAA sanitization (160 ppm, 1 min) exhibited less susceptibility to surface defects, leading to 3.41-4.35 log10 CFU/coupon reductions on worn surfaces, in contrast to 3.68-4.64 log10 CFU/coupon reductions on new surfaces. Furthermore, apple juice soiling diminished the efficacy of sanitizers against L. monocytogenes biofilms on worn surfaces (P < 0.05). These findings underscore the critical importance of diligent equipment maintenance and thorough cleaning processes to effectively eliminate L. monocytogenes contamination on food-contact surfaces.


Assuntos
Listeria monocytogenes , Árvores , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Frutas/química , Cloro , Contagem de Colônia Microbiana , Biofilmes , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Aço Inoxidável/análise
16.
J Food Prot ; 87(3): 100217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184149

RESUMO

The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Animais , Bovinos , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Água/farmacologia , Carne , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Salmonella , Contaminação de Alimentos/análise
17.
Poult Sci ; 103(1): 103213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980760

RESUMO

Food waste and food loss has been a growing concern in the manufacturing industry with a gap between identifying the problem and implementing a solution. The manufacturing process of chicken is largely automated by conveyor belts and machines in which initial application of either peroxyacetic acid (PAA) or sodium hypochlorite (chlorine) solution is utilized to reduce the microbial load and prevent food borne illnesses on the chicken products as they are processed and packaged for distribution. However, during this automated process whole chickens can drop from the manufacturing line and become contaminated leading to the disposal and waste of the product. A solution to reduce food waste was to analyze a reconditioning procedure within the manufacturing process. The study evaluated the aerobic microbial growth on salvaged marinated deli raw whole chickens without giblets (WOGs) from conveyor belt loss reconditioned in either PAA or sodium hypochlorite (chlorine) solution to undropped chicken WOGs. Chicken rinsate and segmented samples were collected from each parameter and tested for microbial growth using Petrifilm aerobic plate count (APC) plates and converting results into log colony forming units (CFU). A difference (P < 0.05) was observed with the reconditioning of the WOGs in PAA (0.71 log10 CFU/mL) compared to the control (1.45 ± 0.26 log10 CFU/mL), for rinses. Of the segmented samples, the trussing strings displayed a significant decrease in APC counts for both chlorine (2.30 ± 0.49 log10 CFU/g) and PAA (2.3 ± 0.49 log10 CFU/g) reconditioning compared to the control (2.72 ± 0.39 log10 CFU/g). Reconditioning of salvaged deli chicken WOGs in chlorine or PAA is comparable to or better than the conventional process for the reduction of APC, it is an effective strategy to reintroduce dropped marinated deli chicken WOGs to the manufacturing line and can reduce food waste at a manufacturing level.


Assuntos
Galinhas , Eliminação de Resíduos , Animais , Aves Domésticas , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Cloro , Microbiologia de Alimentos
18.
J Hazard Mater ; 465: 133303, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141297

RESUMO

Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Cisteína , Compostos Férricos , Poluentes Químicos da Água/análise , Antibacterianos , Sulfametoxazol/análise , Oxirredução , Peróxido de Hidrogênio
19.
Poult Sci ; 103(2): 103310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103529

RESUMO

Peroxyacetic acid (PAA) is commonly used during poultry processing to reduce the prevalence of Salmonella on carcasses and parts. Wash solutions containing PAA are used at varying concentrations during processing and processors use internally validated practices that best suit the needs of the individual establishment. This study was conducted to determine how temperature, pH, and contact time in combination with PAA concentration can affect the survival of Salmonella on poultry. The effectiveness of PAA in reducing the population of Salmonella on chicken wings was dependent on the concentration and temperature of the PAA solutions. The pH or contact time had no effects (P > 0.05) on total Salmonella or Salmonella Infantis reduction (log CFU/mL). Treatment with 0 ppm PAA at 27°C did not reduce (P > 0.05) total Salmonella or Salmonella Infantis compared to the inoculated, untreated control; in contrast, treatment at 4°C and 0 ppm PAA reduced (P < 0.05) total Salmonella and Salmonella Infantis. Treatments applied at 4°C significantly reduced (P < 0.05) total Salmonella at 50, 200, and 500 ppm PAA, compared to treatment at 27°C among the same PAA concentration. The population of Salmonella Infantis was significantly reduced (P < 0.05) at 4°C with 0, 50, 200, 500, and 1,000 ppm PAA among the same PAA concentration, compared to treatment at 27°C. Treatment conditions, such as temperature, can impact the effectiveness of PAA used as an antimicrobial treatment during poultry processing, and the results from this study can provide useful insights that could assist poultry processors to effectively incorporate PAA into antimicrobial intervention systems.


Assuntos
Anti-Infecciosos , Ácido Peracético , Animais , Ácido Peracético/farmacologia , Galinhas , Temperatura , Anti-Infecciosos/farmacologia , Salmonella , Aves Domésticas , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos , Contagem de Colônia Microbiana/veterinária , Manipulação de Alimentos/métodos
20.
Water Res ; 249: 120992, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096724

RESUMO

With the growing complexity and severity of water pollution, it has become increasingly challenging to effectively remove contaminants or inactivate microorganisms just by traditional chemical oxidants such as O3, chlorine, Fe(VI) and Mn(VII). Up till now, numerous studies have indicated that these oxidants in combination with peroxides (i.e., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), peracetic acid (PAA) and periodate (PI)) exhibited excellent synergistic oxidation. This paper provided a comprehensive review on the combination of aforementioned oxidant-peroxide applied in water and wastewater treatments. From one aspect, the paper thoroughly elucidated the synergy mechanism of each oxidant-peroxide combination in turn. Among these combinations, H2O2 or PMS generally performed as the activator of four traditional oxidants above to accelerate reactive species generation and therein various reaction mechanisms, including electron transfer, O atom abstraction and oxo ligand substitution, were involved. In addition, although neither PAA nor PI was able to directly activate Fe(VI) and Mn(VII), they could act as the stabilizer of intermediate reactive iron/manganese species to improve the latter utilization efficiency. From another aspect, this paper summarized the influence of water quality parameters, such as pH, inorganic ions and natural organic matter (NOM), on the oxidation performance of most combined systems. Finally, this paper highlighted knowledge gaps and identified areas that require further research.


Assuntos
Oxidantes , Poluentes Químicos da Água , Oxidantes/química , Peróxido de Hidrogênio/química , Águas Residuárias , Peróxidos/química , Oxirredução , Ácido Peracético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...